

Junlin Luo

Tsinghua University, Beijing
luojl21@mails.tsinghua.edu.cn

EDUCATION

Undergraduate in Tsien Excellence in Engineering Program

*Theoretical and Applied Mechanics
Tsinghua University, Beijing*

August 2021 - June 2025(Expected)

Academic Performance GPA 3.95/4.00

RESEARCH INTERESTS

- Data-driven discovery for physics, especially in mechanics.
- Neural operator simulation of fluid mechanics and solid mechanics.
- Multi-physics and multiscale modeling and prediction.

PUBLICATIONS

Seeking the most informative design of test specimens for learning constitutive models.

Extreme Mechanics Letters · May 15, 2024

Royal Chibuzor Ihuaenyi¹, **Junlin Luo**¹(Equal Contributor), Wei Li, Juner Zhu*

RESEARCH EXPERIENCE

Symbolic regressions for PDE directly driven by PDE solution.

Advisor: Prof. Lu Lu, Yale University, New Haven

2024/07 - Present

- **Data-Driven Method for PDE Discovery**

· Build an end-to-end model to directly regress the analytical skeleton of the PDE from the solution.

· Step-by-step PDE regression method to improve model generalization.

Seeking the most informative specimen shape for learning constitutive models.

Advisor: Prof. Juner Zhu, Northeastern University, Boston

2023/07 - 2023/09

- **Interdisciplinary work of *Optimization of Mechanics Sample shape & Information Quantification***
- Propose the idea — "Utilizing *entropy criterion* to help quantify the information contained" in experiments with different sample shapes.
- Demonstrate that different testing shapes in nano-indentation lead to different 'information entropy value of the stress state', which could indicate the diversity of the stress state.
- One paper published on *Extreme Mechanics Letters*.

Investigating abiotic particles accumulation behind cylinders in microfluidic chips.

Advisor: Prof. Moran Wang, Tsinghua University, Beijing

2023/11 - 2024/06

- **Microfluidic Chips(Experiment & Simulation)**

· Discover the pattern of the 'streamer-like' growing of abiotic particles behind the cylinder in microfluidic chips.

· Attempt to propose dynamical equations to physically describe the growing patterns.

· Investigate the reasons why abiotic particles accumulate behind the cylinder without the existence of the biofilm, which is considered as the reason why its counterpart, biotic streamer, forms.

· Ouzo effect and Phase Transition(Experiment & Data Analysis)

- Conduct the experiments and propose a new attribute to quantitatively describe the phase transition of ternary liquid evaporation in confined space.
- Explain how the interface shape's destruction interferes with the symmetry of the fluid field pattern.

AWARDS

National Scholarship(top 0.2% nationwide)	2022/10
National Encouragement Scholarship	2023/10
Freshman Scholarship	2021/09
First Prize in the 38th National College Students' Physics Competition	2021/12
First Prize in the 37th National High School Students' Physics Competition(top 50)	2020/10
Golden Prize(Rank No.1) for the 11th Tsinghua Freshman Creativity Contest	2021/10

SELECTED COURSEWORK**Mathematics**

Probability and Mathematical Statistics	A
Advanced Calculus(1),(2)	A
Advanced Algebra and Geometry	A
Methods of Mathematical physics	A+
Foundations of Scientific and Engineering Computing(Numerical Analysis)	A-
Numerical Methods for Partial Differential Equations	Audit

Mechanics & Physics

Thermodynamics and Statistical Physics	A+
Fluid Mechanics	A
Solid Mechanics	A
Theoretical Mechanics	A
Physics for Scientists and Engineers	A+
Physics(2)	A
Introduction to Particle Transport	A+

Computation & Modeling

Pattern Recognition and Machine Learning	A
Signals and System Analysis	A
Computational Fluid Dynamics	A
Theory and Modelling of Thermo-Fluid-Structure Coupling	A-
Fundamentals of Computer Programming	A-
Introduction to Deep Learning	P

SKILLS

Coding Languages:	Python(Proficient), Matlab, C/C++
Professional Software	OpenFoam(Adept), Basic AUTOCAD(Adept), Solidworks, Abaqus, Multisim.
English Proficiency	TOEFL 106, Speaking 23

EXTRA-CURRICULAR**Volleyball**

2023/09–Present

Team manager, Xingjian College Volleyball Team.

- Serve as a **setter**.
- Led the team from failing to advance past the group stage in 2023 to reach the round of 16 in 2024, in Tsinghua University Ma Yuehan Cup Volleyball League.